

Установка поверочная Ирга-ПУ-МС

Руководство по эксплуатации

19.1.00.00.00РЭ

Содержание

1	Опи	исание и работа	3
	1.1	Назначение	3
		Технические характеристики	
		Метрологические характеристики	
		Устройство и принцип работы	
		Маркировка и пломбирование	
		Упаковка	
2		юльзование по назначению	
		Эксплуатационные ограничения	
		Монтаж установки	
		Подготовка к использованию	
		Использование по назначению	
3		ническое обслуживание и ремонт	
		Техническое обслуживание	
		Возможные неисправности и способы их устранения	
4		нение и транспортирование	
_		Правила хранения	
		Условия транспортирования	

Установка поверочная Ирга-ПУ-МС, внесённая в Государственный реестр средств измерений, разработана и выпускается ООО «ГЛОБУС».

Установка Ирга-ПУ-МС содержит запатентованные и патентуемые объекты промышленной собственности. Воспроизведение (изготовление, копирование) установок Ирга-ПУ-МС любыми способами, как в целом, так и по составляющим (включая программное обеспечение) может осуществляться только по лицензии ООО «ГЛОБУС».

Изготовитель оставляет за собой право вносить конструктивные изменения, не ухудшающие метрологические характеристики.

Отдельные изменения, связанные с дальнейшим совершенствованием установки, могут быть не отражены в настоящем издании.

Руководство по эксплуатации (далее — РЭ) предназначено для изучения принципа действия, устройства, правил монтажа, наладки, эксплуатации и обслуживания установки поверочной Ирга-ПУ-МС (далее — установки или Ирга-ПУ-МС).

Для изучения принципа действия, устройства, правил монтажа, наладки, эксплуатации и обслуживания составных частей установки необходимо руководствоваться эксплуатационной документацией на каждую из составных частей.

РОССИЯ

308023, Белгород, ул. Садовая, 45-А тел./факс: +7 (4722) 26-42-50, 26-18-46, 31-33-76

2

1 Описание и работа

1.1 Назначение

1.1.1 Установка предназначена для испытаний и поверки турбинных, ротационных, вихревых, струйных, ультразвуковых, расходомеров (счётчиков, расходомеров-счётчиков), а также любых других расходомеров и счётчиков, предназначенных для измерения расхода и объёма газовых сред (природного газа, воздуха, пара и др.), а также для поверки бытовых счётчиков газа.

Область применения — поверка и калибровка расходомеров и счётчиков газа и пара.

1.2 Технические характеристики

- 1.2.1 Состав изделия
- 1.2.1.1 В состав установки входят следующие составные части:
- линии измерения объёма и расхода воздуха (далее ИЛ), количество линий зависит от диапазона измерения установки, заданной заказчиком (верхнего предела измерения расхода установки (далее ВПИ) и нижнего предела измерения расхода установки (далее НПИ));
- вентиляционные установки для обслуживания измерительных линий, с частотным приводом и ресивером, количество установок зависит от количества измерительных линий;
- устройство связи с объектом (далее УСО);
- персональный компьютер (далее ПК) с программным обеспечением.
- 1.2.1.2 В состав ИЛ входят следующие составные части:
- эталонные расходомеры «Ирга-РВ» и Ирга-РУ, с соответствующими прямыми участками измерительного трубопровода;
- прямые участки измерительного трубопровода для поверяемых счётчиков и расходомеров;
- датчики температуры, абсолютного давления и перепада давления;
- соединительный участок;
- комплект сменных прямых участков;
- запорно-регулирующее оборудование.

Наименование и заводские номера покупных изделий указаны в паспорте на Установку.

- 1.2.2 Основные параметры и характеристики.
- 1.2.2.1 Параметры измеряемой среды:
- измеряемая среда воздух;

- максимальное избыточное давление измеряемой среды составляет не более $10~\mbox{k}\Pi a;$
- температура измеряемого воздуха от плюс 15 °C до плюс 25 °C;
- атмосферное давление от 84 до 106 кПа.
- 1.2.2.2 В качестве средства задания расхода в ИЛ применяется нагнетательный радиальный вентилятор. Выбор модели вентилятора и частотного привода зависит от максимального значения объёмного расхода (далее ВПИ) измерительных линий. Радиальный вентилятор укомплектован ресивером и управляемым частотным приводом.

1.2.2.3 Параметры энергопотребления.

Напряжение питания составных частей установки, кроме вентиляционной и компрессорной установок — от 187 до 242 В частотой от 49 до 51 Гц. Потребляемая мощность без вентилятора не превышает 5 кВт.

Напряжение питания вентиляционной установки 380 В. Потребляемая мощность вентилятора зависит от режима работы, но не превышает 75 кВт.

1.2.2.4 Первичные преобразователи.

В качестве эталонов расхода в составе ИЛ применяются вихревые и ультразвуковые расходомеры «Ирга-РВ» и Ирга-РУ с условными диаметрами, которые подбираются в соответствии с верхним и нижним пределами измерений Установки.

Термопреобразователи сопротивления и (или) комплекты термометров, входящие в состав установок, применяются с номинальной статической характеристикой (HCX) Pt100, 100П и классами точности A, AA.

Датчики абсолютного давления ДА (преобразователи абсолютного давления), входящие в состав установки, применяются с выходным сигналом RS-485, с верхним пределом измерения не более $160~\rm k\Pi a$; с пределом основной приведённой погрешности от верхнего предела измерений не более $\pm 0.25~\%$.

Датчики перепада давления ДД (преобразователи перепада давления), входящие в состав установки, применяются с выходным сигналом RS-485, с верхним пределом измерения не более $10~\rm k\Pi a$; с пределом основной приведённой погрешности от верхнего предела измерений не более $\pm 0.25~\rm \%$.

1.2.2.5 Габаритные размеры установки определяются количеством ИЛ и величиной верхнего предела измерения, а также привязаны к размерам помещения, в котором размещается установка. Для установки с верхним пределом $16000 \text{ м}^3/\text{ч}$ габаритные размеры — не более $25000 \times 1200 \times 2500 \text{ мм}$. Для установки с верхним пределом $2500 \text{ м}^3/\text{ч}$ габаритные размеры — не более $15000 \times 8000 \times 2500 \text{ мм}$. Габаритные размеры установок с иными верхними пределами указываются в паспорте на установку.

- 1.2.2.6 Режим работы непрерывный, круглосуточный. Средняя наработка установки на отказ при вероятности метрологической исправности 0,99— не менее 65000 часов. Средний срок службы установки— не менее 15 лет.
- 1.2.2.7 Установка относится к восстанавливаемым, неремонтируемым в условиях эксплуатации изделиям.
- 1.2.2.8 Технические характеристики составных частей установки, а именно: климатическое исполнение, условия эксплуатации, степень защиты оболочки и другие, указаны в их эксплуатационной документации.

1.3 Метрологические характеристики

1.3.1 Максимальное значение объёмного расхода, воспроизводимого Установками, выбирается из ряда (м³/ч): 16000; 12000; 6500; 4000; 2500; 1600; 1000; 650; 400; 250; 160; 100; 65; 40; 25.

Минимальное значение объёмного расхода (далее — НПИ), воспроизводимого и измеряемого Установками, выбираются из ряда (m^3/v): 0,03; 0,04; 0,065; 0,08; 0,1; 0,13; 0,16; 0,2; 0,25; 0,35; 0,4; 0,5; 0,6; 0,65; 0,8; 1; 1,1; 1,3; 1,6; 2; 2,5; 2,6; 3; 3,2; 4; 5; 6,5; 8; 10; 13; 16; 20.

- 1.3.2 Пределы допускаемой относительной погрешности измерения воспроизводимых расходов воздуха не превышают ± 0.4 %.
- 1.3.3 Поверка установки производится в соответствии с Методикой поверки, утверждённой в установленном порядке.

Интервал между поверками -2 года.

1.3.4 Диапазон расхода, измеряемого Установкой, и конкретные значения расхода указываются в паспорте на установку.

1.4 Устройство и принцип работы

- 1.4.1 Устройство установки.
- 1.4.1.1 Установка состоит из ИЛ, а также УСО, ПК, вентиляционных установок, частотных приводов, соединительных участков, прямых участков и запорно-регулирующего оборудования. Первичные преобразователи температуры, абсолютного давления и перепада давления, входящие в состав ИЛ, установленные в местах расположения эталонных и поверяемых СИ, обеспечивают измерение температуры, давления и перепада давления воздушного потока при рабочих условиях. Запорно-регулирующее оборудование обеспечивает переключение и регулировку потока воздуха.
- 1.4.1.2 Места установки датчиков давления и термопреобразователей и их количество определяются количеством ИЛ и приводится в паспорте на установку.
 - 1.4.2 Принцип работы установки.
- 1.4.2.1 Принцип работы установки заключается в сличении результатов измерений, полученных с помощью поверяемых преобразователей количества и объёмного

расхода газа, и результатов измерений, полученных с помощью эталонных СИ, входящих в состав установки.

- 1.4.2.2 Поверяемый расходомер (счётчик) устанавливается в начале одной из ИЛ, с учетом обеспечения необходимых длин прямых участков, последовательно с эталонными расходомерами (вихревыми и/или ультразвуковыми), состав которых с помощью запорно-регулирующей арматуры подбирается в соответствии с диапазоном расходов поверяемого счётчика (расходомера).
- 1.4.2.3 Схемы подключения поверяемого счётчика (расходомера) для каждой из ИЛ, входящей в состав установки, приводятся в паспорте на установку.
 - 1.4.3 Описание работы.
- 1.4.3.1 Типовая принципиальная схема установки с одной ИЛ приведена на рисунке 1.

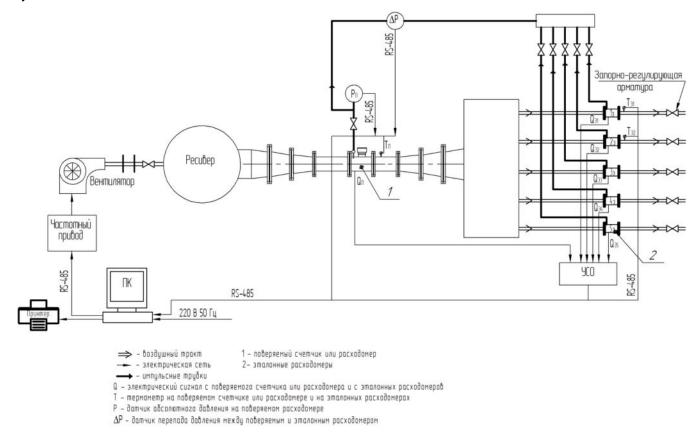


Рисунок 1 — Схема структурная принципиальная ИЛ-1

1.4.3.2 Для воспроизведения заданных расходов на поверяемых и эталонных расходомерах используются нагнетательный радиальный вентилятор, частотный привод и запорно-регулирующее оборудование на концах измерительных участков эталонных расходомеров. Электрические сигналы от поверяемых и эталонных расходомеров, а также датчиков температуры поступают в УСО, преобразуются в циф-

ровой сигнал и далее по протоколу MODBUS RTU поступают в ПК. Датчики абсолютного давления и перепада давления передают измеренные значения абсолютного давления и перепада давления по протоколу RS-485 MODBUS RTU непосредственно в компьютер. ПК вычисляет объём и расход воздуха, прошедший через эталонные и поверяемые расходомеры (счётчики), и рассчитывает погрешность поверяемого СИ.

Объем воздуха V_{sk} (м³), прошедший через k –ый эталонный расходомер за время измерения , определяется по формуле:

$$V_{sk} = \frac{N_{sk}}{K_{sk}},\tag{1}$$

где k — порядковый номер расходомера;

 $K_{\rm sk}$ — цена выходного импульса (градуировочная характеристика k -го расходомера, определяемая при его выпуске из производства, K-фактор), имп/м 3 ;

 $N_{\rm sk}$ — количество импульсов, поступивших с k -го эталонного расходомера за время измерения:

$$N_{sk}=f_{sk}\cdot \tau$$
,

где f_{sk} — выходная частота k -го эталонного расходомера;

au — время измерения в секундах.

Для определения действительного значения объёма воздуха V_{rk} воспроизведённого k -м эталонным расходомером и прошедшего через поверяемый (калибруемый) расходомер за время измерения , необходимо объём воздуха, определённый по формуле (1), привести к рабочим условиям поверяемого расходомера. Соответственно, выполнив приведение по уравнению состояния идеального газа результата измерения объёма воздуха k -м эталонным расходомером (сжимаемостью воздуха можно пренебречь при рабочих давлениях Установки), получим выражение действительного значения объёма воздуха:

$$V_{rk} = \left(1 - \frac{\Delta P_k}{P_n}\right) \cdot \frac{(273,15 + t_n)}{(273,15 + t_{sk})} \cdot V_{sk}, \tag{2}$$

где t_n — температура воздуха в поверяемом расходомере, °C;

 t_{sk} — температура воздуха в k -ом эталонном расходомере, °C;

 $\Delta P_{\scriptscriptstyle k}$ — перепад давления между поверяемым и ${\it k}$ –ым эталонным расходомерами;

 $P_{\scriptscriptstyle n}$ — абсолютное давление воздуха в поверяемом расходомере.

Если в соответствии с размером задаваемого объёмного расхода воздуха одновременно должны работать несколько эталонных расходомеров Установки, то дей-

ствительное значение объёма воздуха, прошедшего через поверяемый расходомер за время au, рассчитывается по формуле:

$$V_{r} = \sum_{k=1}^{l} V_{rk} = \sum_{k=1}^{l} V_{rk} \cdot \left(1 - \frac{\Delta P_{k}}{P_{n}}\right) \cdot \frac{(273,15 + t_{n})}{(273,15 + t_{k})} \cdot V_{sk}. \tag{3}$$

В силу принятых конструктивных решений в Установке одновременно работают, либо один эталонный расходомер с минимальным диапазоном измерения (воспроизведения) объёмного расхода воздуха, либо четыре эталонных расходомера на оставшемся участке диапазона измерений Установки. Следовательно, l=1 или l=4. В соответствии с принципиальной схемой, рисунок 1, в состав Установки включены пять эталонных расходомеров.

Действительное среднее значение расхода воздуха Q_r через поверяемый расходомер за время измерений , определяется выражением:

$$Q_r = \frac{3600 \cdot V_r}{\tau},\tag{4}$$

где Q_r — средний расход воздуха за время au, м 3 /ч.

1.4.3.3 ПК предназначен для сбора, регистрации, обработки информации от поверяемого и эталонных расходомеров, датчиков давления, датчиков перепада давления и термопреобразователей сопротивления, для управления частотным приводом, а также для выдачи результатов поверки в форме, удобной для дальнейшего их использования.

1.5 Маркировка и пломбирование

- 1.5.1 Сведения о маркировке и пломбировании отдельных составных частей установки изложены в их эксплуатационной документации.
- 1.5.2 Право распломбирования СИ в составе установки имеют представители предприятий или организаций, их опломбировавших.

1.6 Упаковка

1.6.1 Установка является стационарным устройством и в обычных условиях упаковке не подлежит.

При необходимости транспортирования составные части установки упаковываются в тару предприятий-изготовителей вместе с эксплуатационной документацией.

8 Hos.

2 Использование по назначению

2.1 Эксплуатационные ограничения

2.1.1 Эксплуатационные ограничения на составные части установки устанавливаются в соответствии с их эксплуатационной документацией.

2.2 Монтаж установки

- 2.2.1 Меры безопасности при монтаже.
- 2.2.1.1 По способу защиты человека от поражения электрическим током установка и её составные части относятся к классу 0I по ГОСТ 12.2.007.0-75.
- 2.2.1.2 Составные части установки должны быть надёжно заземлены медным изолированным проводом сечением не менее 1,5 мм² с использованием специальных зажимов заземления, имеющихся на каждой составной части.

Допускается уменьшение сечения медных заземляющих проводников до 1 мм^2 в соответствии с требованиями главы 1.7 ПУЭ при использовании для заземления жил многожильных проводов и кабелей в общей защитной оболочке с фазными жилами, применяемых для сетевого питания.

- 2.2.1.3 К электрическому монтажу, демонтажу, эксплуатации и техническому обслуживанию установки должны допускаться только те лица, которые изучили настоящее РЭ и имеют группу допуска по электробезопасности не ниже III.
- 2.2.1.4 При монтаже, обслуживании и испытаниях установки необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей» и «Правила по охране труда при эксплуатации электроустановок». Необходимо также соблюдать требования по безопасности на составные части установки, приведённые в соответствующих разделах эксплуатационной документации на них.
- 2.2.1.5 Все работы, связанные с монтажом, демонтажом, устранением неисправностей должны производиться при отключённом электропитании. Запрещается проводить ремонт и устранять неисправности во время работы установки.
 - 2.2.2 Монтаж установки.
- 2.2.2.1 Монтаж эталонных расходомеров, компрессорной и вентиляционной установок, датчиков давления и датчиков температуры производится в соответствии с эксплуатационной документацией на указанные составные части.
- 2.2.2.2 Длина линий связи по трассе прокладки кабелей от первичных преобразователей расхода, давления, температуры до устройства связи с объектом должна составлять не более 100 м.
- 2.2.2.3 Установку соединительных коробок и устройство кабельных муфт рекомендуется производить по возможности ближе к УСО.

2.3 Подготовка к использованию

- 2.3.1 Подготовка к пуску.
- 2.3.1.1 Перед первым включением установки необходимо:
- проверить правильность монтажа составных частей;
- проверить наличие заземления и проверить сопротивление заземления, которое должно быть не более 4 Ом.
- 2.3.1.2 Проверить пломбирование составных частей установки в соответствии с их эксплуатационной документацией.
- 2.3.1.3 Выполнить требования по подготовке к пуску, оговоренные в эксплуатационной документации на составные части.
 - 2.3.2 Пуск установки.
- 2.3.2.1 Последовательность действий по пуску установки определяется выбором одной из ИЛ.
- 2.3.2.2 Работоспособность установки при пуске контролируется по показаниям расхода (Q), температуры (t) и давления (P) на мониторе ПК в соответствии с 1.2.2.1 и 1.2.2.2 данного РЭ.
- 2.3.2.3 При пуске не допускается превышение максимального расхода при рабочих условиях, указанного в паспорте установки.

2.4 Использование по назначению

- 2.4.1 Порядок работы с ИЛ.
- 2.4.1.1 Установить на соединительном участке конусные переходы и прямые участки трубопровода, соответствующие типоразмеру поверяемого расходомера. Установить поверяемый расходомер на измерительный участок.

С помощью запорно-регулирующего оборудования подобрать сочетание эталонных расходомеров, соответствующее характеристикам поверяемого расходомера. Значения расхода, воспроизводимые эталонными расходомерами, должны соответствовать поверочным точкам данных расходомеров, указанным в протоколах испытаний.

Проверить герметичность Установки.

2.4.1.2 Включить питание УСО, ПК, датчиков, поверяемого и эталонных расходомеров. Включить питание вентилятора и частотного привода.

ВНИМАНИЕ!

Пуск вентилятора производить на минимальной частоте вращения, равной 3 Гц, постепенно увеличивая частоту до достижения необходимого расхода измеряемой среды.

10

ЗАПРЕЩАЕТСЯ резкое изменение частоты вращения двигателя вентилятора при регулировании.

Для избежания воздействия пневмоудара на поверяемый счётчик газа (выхода счётчика из строя) необходимо плавное регулирование частоты вращения двигателя вентилятора.

- 2.4.1.3 В соответствии с диапазоном расхода поверяемого расходомера задать первое требуемое значение поверочного расхода. Значения задаются вводом с клавиатуры ПК, входящего в состав установки, и по интерфейсу RS-485 передаются на программно управляемый частотный привод, который регулирует частоту вращения вентилятора.
- 2.4.1.4 После того, как первое требуемое значение расхода установлено, по команде оператора ПК производит синхронную регистрацию показаний поверяемого и эталонных расходомеров.

Длительность измерения задаётся программно в соответствии с методикой поверки поверяемого счётчика или расходомера.

- 2.4.1.5 Операции согласно 2.4.1.3, 2.4.1.3 повторить для всех требуемых значений расхода, в соответствии с методикой поверки поверяемого счётчика или расходомера.
- 2.4.1.6 По результатам измерений объёмов и расходов полученных стендом и поверяемым счётчиком или расходомером ПК формирует протокол поверки.

3 Техническое обслуживание и ремонт

3.1 Техническое обслуживание

- 3.1.1 Эксплуатация установки должна осуществляться в соответствии с настоящим РЭ. Учёт времени наработки, неисправностей, всех профилактических и ремонтных работ должен фиксироваться в соответствующих разделах паспорта установки с подписью лица, назначенного приказом по предприятию ответственным за правильную эксплуатацию установки.
- 3.1.2 В процессе эксплуатации, не реже 1 раза в месяц, установка должна подвергаться периодической проверке технического состояния в процессе которой проверяют:
 - герметичность воздушных контуров установки;
 - отсутствие обрывов или повреждения изоляции соединительных линий;
 - надёжность подключения кабелей;
 - отсутствие обрывов заземляющих проводов;
 - отсутствие пыли и грязи на составных частях установки.
- 3.1.3 При длительном отключении установки должны быть оформлены Акты на соответствующие работы с указанием причин отключения и сделаны записи в паспорте установки и/или отдельных составных частей.

3.2 Возможные неисправности и способы их устранения

- 3.2.1 Ремонт установки может производить предприятие-изготовитель или специализированное предприятие, имеющее разрешение изготовителя.
- 3.2.2 Устранение неисправностей, связанных с работоспособностью датчиков, должно производиться специалистами предприятий-изготовителей соответствующих составных частей или специализированных предприятий, имеющих лицензии на производство соответствующих работ.
- 3.2.3 Устранение неисправностей необходимо проводить при отключённом сетевом питании всех составных частей установки.
- 3.2.4 Перечень возможных неисправностей и способов их устранения приведён в таблице 1, а также в эксплуатационной документации на составные части установки.

12

Таблица 1 — Перечень возможных неисправностей и способов их устранения

Наименование неисправности	Вероятная причина	Способ устранения
При включении отсутству-	Отсутствует сетевое	Обеспечить подачу сетево-
ет индикация включения и индикация на экране ПК	напряжение	го напряжения
	Неисправен ПК или УСО Обрыв кабеля питания или	Устранить неисправность
	линий связи	Устранить обрыв
При наличии расхода воз-	Обрыв в линии связи из-	Устранить обрыв
духа показания расхода	мерения расхода	
равны нулю	Неисправность механиче-	Устранить неисправность
	ских или электрических	расходомера
	частей расходомера	
Показания датчиков расхо-	Неисправность датчика	Устранить неисправность
да, давления или темпера-		датчика
туры выходят за границы		
предельно допустимых		
значений		

4 Хранение и транспортирование

4.1 Правила хранения

4.1.1 Установка является стационарным устройством и в обычных условиях складированию и хранению не подвергается.

При необходимости демонтажа и последующего хранения установки необходимо соблюдать правила хранения, изложенные в эксплуатационной документации на составные части установки.

4.1.2 В процессе хранения составные части установки не должны подвергаться механическим воздействиям, загрязнениям, воздействию воды, нефтепродуктов, агрессивных сред.

4.2 Условия транспортирования

4.2.1 Установка является стационарным устройством и в обычных условиях транспортированию не подвергается.

При необходимости транспортирования установки необходимо соблюдать правила транспортирования, изложенные в эксплуатационной документации на составные части установки.

ЗАКАЗАТЬ

14 Hos.